
ImaginaryInfinity Calculator
Release 2.13.0

Finian Wright & Connor Sample

Aug 31, 2023

CONTENTS

1 ImaginaryInfinity Calculator 3
1.1 NOTICE: ImaginaryInfinity Calculator has reached end of life and will no longer receive any up-

dates. We are now working on a new, actually functional calculator, which you can find here:
https://gitlab.com/ImaginaryInfinity/squiid-calculator/squiid . 3

1.2 Packages . 4
1.3 Installation . 5
1.4 Command usage . 6
1.5 Supported platforms . 6
1.6 Plugins . 7
1.7 Themes . 8
1.8 Built in commands: . 8
1.9 Plugin store . 8
1.10 In-app documentation . 9

2 Making and submitting a standardized plugin or theme 11
2.1 Table of Contents . 11

3 NOTICE: THE PLUGIN STORE IS NO LONGER AVAILABLE. 17
3.1 Submiting a plugin . 17
3.2 Updating your plugin . 18
3.3 Deleting a plugin . 18
3.4 Reporting a plugin . 18
3.5 Rating a plugin . 18
3.6 Any problems? . 18

4 How to add plugin settings to settings editor 19

5 Plugin Submitting Guidelines 23

i

ii

ImaginaryInfinity Calculator, Release 2.13.0

Contents:

CONTENTS 1

ImaginaryInfinity Calculator, Release 2.13.0

2 CONTENTS

CHAPTER

ONE

IMAGINARYINFINITY CALCULATOR

1.1 NOTICE: ImaginaryInfinity Calculator has reached end of life and
will no longer receive any updates. We are now working on
a new, actually functional calculator, which you can find here:
https://gitlab.com/ImaginaryInfinity/squiid-calculator/squiid

ImaginaryInfinity Calculator is a lightweight, but expandable calculator. Its command line interface is designed to
resemble that of some graphing calculators. To perform another operation on a result, simply type the operation you
wish to perform (eg. “/5” to divide the previous result by 5). To use the previous result in a new calculation, just
specify the operation after the new calculation (eg. “5-” to subtract the previous result from 5), or by using the ans or
_ variables, like _ + 3. Note: commits on the master branch are far between, since we try to do all development on
the development branch. If you’re interested in testing new features, check out the development branch!

The documentation can also be read at readthedocs.

3

https://imaginaryinfinity-calculator.readthedocs.io/en/stable/?badge=master
https://imaginaryinfinity-calculator.readthedocs.io/en/master/

ImaginaryInfinity Calculator, Release 2.13.0

More screenshots

1.2 Packages

We provide a packaged version of ImaginaryInfinity Calculator for some Linux distributions. They can be found below.

1.2.1 Debian/Ubuntu

iiCalc can be installed on Ubuntu based systems by adding the PPA and installing it via apt, or on Debian/Ubuntu based
systems by manually downloading and installing the deb.

PPA:

sudo add-apt-repository ppa:imaginaryinfinity/iicalc
sudo apt update

sudo apt install iicalc # master branch
sudo apt install iicalc-beta # development branch

Manual installation:

Download (iicalc.deb)

This package can be installed with apt, gdebi, qapt, etc.

1.2.2 Arch Linux

You can install the AUR package or download the package below. To install from the AUR:

git clone https://aur.archlinux.org/iicalc.git && cd iicalc
makepkg -si

Or you can install it with the below package:

Download (iicalc-any.pkg.tar.zst)

This package can be installed using pacman, with sudo pacman -U iicalc-any.pkg.tar.zst

1.2.3 Red Hat/openSUSE

Download (iicalc.rpm)

This package can be installed or updated on Red Hat based systems, like Fedora and CentOS, using rpm, with sudo
dnf install iicalc.rpm and on openSUSE systems with sudo zypper install iicalc.rpm. You can also
install it by opening it with a graphical package manager like YaST Software, Discover, GNOME Software, etc.

4 Chapter 1. ImaginaryInfinity Calculator

https://gitlab.com/TurboWafflz/ImaginaryInfinity-Calculator/-/jobs/artifacts/master/raw/iicalc.deb?job=debian%20packager
https://gitlab.com/TurboWafflz/ImaginaryInfinity-Calculator/-/jobs/artifacts/master/raw/iicalc-any.pkg.tar.zst?job=buildpkg
https://gitlab.com/TurboWafflz/ImaginaryInfinity-Calculator/-/jobs/artifacts/master/raw/iicalc.rpm?job=buildrpm

ImaginaryInfinity Calculator, Release 2.13.0

1.2.4 Windows Installer

Download (iicalc.exe)

Windows may show a window saying “Windows protected your PC.” To install the package anyway, click “More Info”
and then “Install anyway”

1.2.5 Snap

The iicalc snap can be installed via snap install iicalc. To install the development branch/beta channel version,
run snap install --beta iicalc

1.2.6 AppImage

Download (ImaginaryInfinity_Calculator-x86_64.AppImage)

Just make executable and run on many Linux distributions

1.3 Installation

The advantages of using an installed version of the calculator are that you can launch it from anywhere in a terminal,
just by running the iicalc command. Installing it also adds a shortcut to your application menu, and if you’re on
Windows, you have the option to add a desktop shortcut.

1.3.1 Portable Mode

The calculator can be run without any installation on any device that supports Python 3. Just clone the repository and
in the directory that you cloned it to, run python3 main.py, or replace python3 with your operating system’s python
command. (Windows is py, Android is python, etc.)

1.3.2 Linux/MacOS/Android installation

ImaginaryInfinity Calculator can be installed on Linux by installing the package for your operating system. If your
operating system doesn’t have a package or you don’t want to install a package, you can use the installer script. Just
go to the directory where you downloaded the calculator and run bash installer.sh in your terminal to install the
calculator. The calculator can be easily uninstalled by running bash uninstaller.sh in the same directory.

1.3. Installation 5

https://gitlab.com/TurboWafflz/ImaginaryInfinity-Calculator/-/jobs/artifacts/master/raw/iicalc.exe?job=buildexe
https://snapcraft.io/iicalc
https://gitlab.com/TurboWafflz/ImaginaryInfinity-Calculator/-/jobs/artifacts/master/raw/ImaginaryInfinity_Calculator-x86_64.AppImage?job=AppImage%20packager

ImaginaryInfinity Calculator, Release 2.13.0

1.3.3 Windows Installation

The calculator can be installed on Windows by downloading and running the windows exe installer or by using the
provided powershell script. To install via the powershell script, first search powershell in the windows start menu,
right click it, and run it as administrator. Then run Set-ExecutionPolicy Unrestricted -Scope CurrentUser,
and type “Y” to say yes. This makes it so that the installer script can run. Now, navigate to the directory where
you downloaded the calculator, and run .\installer.ps1. The calculator can be easily uninstalled by opening a
powershell session and running .\uninstaller.ps1 in the same directory.

1.4 Command usage

usage: iicalc [-h] [--config CONFIG] [--ensurereqs] [--version]

optional arguments:
-h, --help show this help message and exit
--config CONFIG, -c CONFIG

Specify a file path to use as the config file
--ensurereqs, -e Ensure that all requirements are satisfied
--version, -V Print version and exit

1.5 Supported platforms

ImaginaryInfinity Calculator fully supports the following platforms:

• Linux

– Primary development and testing OS. Should have the best support

• Android

– Termux support covers all or most features including installation.

ImaginaryInfinity Calculator has partial support for the following platforms:

• Haiku

– Command history and line navigation are not currently available in Haiku due to the removal of the
readline module

– Haiku has fairly good support now and is supported by the installer. There are however a few bugs such as
syntax highlighting in documentation not working right

• MacOS

– MacOS 10.15.7 has been tested to work

• Various BSD OSs

– Extensive testing has not been performed, but the calculator should be mostly working on OpenBSD,
NetBSD, and FreeBSD

• Windows

– Windows support receives much less testing than other platforms

6 Chapter 1. ImaginaryInfinity Calculator

ImaginaryInfinity Calculator, Release 2.13.0

• Any other OS that can run Python 3

– Start an issue on GitHub and we may improve support for your OS

ImaginaryInfinity Calculator has been tested to work on these platforms:

• Debian/Ubuntu

• Arch Linux

• OpenBSD

• FreeBSD

• NetBSD

• Fedora

• Alpine Linux

• Android (Termux)

• Void Linux

• MacOS Catalina 10.15.7

• Windows (With some issues in the installer; may be fixed in the future)

– Windows 11

– Windows 10

– Windows 8

– Windows 7 (Python 3.6.9)

• Haiku R1 Beta 2

Python version:

ImaginaryInfinity Calculator has been tested to work on Python 3.6 and above, but support in the future is not guaran-
teed.

1.6 Plugins

New functionality can easily be added by placing Python files with additional functions in the plugins directory or by
downloading plugins from the store. To access a function added by a plugin, type [plugin].[function](). For
example, if you wanted to run the function egg from the plugin food, you would type food.egg(). Arguments placed
in the parentheses will be passed to the function.

1.6.1 Plugin Documentation

• Making a standardized plugin or theme

• Adding custom config settings

• Plugin Guidelines

Note: Functions in the core plugin can be accessed without specifying core. ex. factor(7) instead of core.
factor(7)

1.6. Plugins 7

ImaginaryInfinity Calculator, Release 2.13.0

1.7 Themes

The colors used by the calculator can be modified by themes. Themes are ini files that define the colors the cal-
culator will use and are stored in the themes folder. To change the theme used by the calculator, run settings.
configMod("appearance", "theme", "<theme name>"), or select a theme in the settings editor. One theme is
included by default, dark for use on terminals with a dark background. If you use a terminal with a light background,
you can download our official light theme from the store.

1.8 Built in commands:

The following commands are built in to the calculator or added by the “core” plugin:

• settings.configMod("<section>", "<key>", "<value>") - Changes a value in the config file.

• settings.editor() - Settings editor, not supported on all platforms

• factor(<number>) - Shows factor pairs for a number

• factorList(<number>) - Returns a list of the factors of a number

• fancyFactor(<number>) - Shows factor pairs and their sums and differences for a number

• iprt('<module>') - Installs and imports a python module from PyPi

• isPrime(<number>) - Checks whether or not a number is is prime

• isPerfect(<number>) - Checks whether or not a number’s factors add up to twice the starting number

• restart() - Restarts iiCalc

• clear() or clear - Clears the screen

• sh('<command>') - Runs a command directly on your computer

• update() - Updates the calculator

• quit() - Quit ImaginaryInfinity Calculator

1.9 Plugin store

1.9.1 CLI Store

• pm.update() - Update the package list, this must be run before plugins can be installed or to check for updates

• pm.install(*args) - Installs the specified plugins from the plugin index. (Accepts lists) Example: pm.
install('algebra', 'ptable')

• pm.show("<available/installed>") - List plugins

• pm.search("<term>") - Search the plugin index

• pm.info("<plugin>") - Show info about a plugin

• pm.upgrade() - Install all available updates

• pm.remove(*args) - Removes the specified installed plugins. (Accepts lists) Example: pm.
remove('algebra', 'ptable')

• pm.installFromFile("<filename>") - Install a plugin from a local *.icpk file

8 Chapter 1. ImaginaryInfinity Calculator

ImaginaryInfinity Calculator, Release 2.13.0

1.9.2 GUI Store

• pm.store() - Runs the GUI version of the plugin store (no longer functional) (store.store() is now depre-
cated and will be removed in a future version)

Note: In the GUI search box, you can specify type:<type> anywhere in the query to search for types of plugins. You
can add a subquery by specifying it after the type. Example: type:plugins discord to search for only plugins with
the keyword of discord or light type:theme to search for only themes with the keyword of light. Types of plugins
include:

• plugin(s)

• theme(s)

1.9.3 Submitting a plugin

The plugin store has been discontinued. You can no longer submit plugins

The following commands accept a second argument to prevent the result from being printed. This is useful when
they are used in another function so they don’t all get shown to the user:

• factorList(<number>, [printResult])

• isPrime(<number>, [printResult])

• isPerfect(<number>, [printResult])

• toStd("<value>", [roundVal], [printResult]) - Convert e notation number to standard
notation

printResult can be set to True or False, and defaults to True if not specified

1.10 In-app documentation

Documentation for the calculator and supported plugins can be viewed by running doc.view("<article>"). You
can also list all articles with doc.list().

1.10. In-app documentation 9

ImaginaryInfinity Calculator, Release 2.13.0

10 Chapter 1. ImaginaryInfinity Calculator

CHAPTER

TWO

MAKING AND SUBMITTING A STANDARDIZED PLUGIN OR THEME

This is a guide on how to create and submit a standardized plugin or theme.

2.1 Table of Contents

• Making and submitting a standardized plugin or theme

– Table of Contents

∗ Making a plugin

· Choosing a filename

· Importing features from core

· Running code on calculator start

· Giving answers

· Printing Information

· Handling special events

· Debugging your plugin

∗ Making a theme

· Manually making a theme

· Using a tool

∗ Publishing your plugin to the store

• NOTICE: THE PLUGIN STORE IS NO LONGER AVAILABLE. - Submiting a plugin - Updating your plugin -
Deleting a plugin - Reporting a plugin - Rating a plugin - Any problems?

11

ImaginaryInfinity Calculator, Release 2.13.0

2.1.1 Making a plugin

Choosing a filename

• First, you make your new plugin file. For this example, we’ll be using the discordrpc plugin. Make a new
python file preferably named to something relevant to your plugin. We’ll be choosing the filename discordrpc.
py for this.

Importing features from core

• If you want to make use of some features from the core.py file, you can just import them. For instance, we
want to import the current theme if the plugin is printing stuff and the config if the plugin is configurable, so at
the top of our python file, we will put

from systemPlugins.core import config, theme

If you want to import anything else from core, you can just add it to the list of things being imported, for instance, if
you wanted to import the restart() function, it would look like

from systemPlugins.core import config, theme, restart

Running code on calculator start

If you want to run some code when the calculator is started, for instance, asking the user what their name is to adjust
the config, you can just put the code underneath all of your imports in the python file. Example:

from systemPlugins.core import config, theme, restart

Get user's name
name = input("Input your name here: ")

Giving answers

When giving answers, it’s better to return an answer instead of printing it. This will allow for the resulting calculation
to be used in other calculations.

Printing Information

If you are doing anything involving printing, like taking input or just using print(), you should make it display with
the user’s theme’s color for that type of output. To see the current color palette, you can type dev.showPalette() in
the calculator. The available styles can be found below:

• Normal - No styling

• Error - Error Styling

• Warning - Warning Styling

• Important - Important Text Styling

• StartupMessage - Startup Message styling

• Prompt - The color of the prompt (Default prompt is >)

12 Chapter 2. Making and submitting a standardized plugin or theme

ImaginaryInfinity Calculator, Release 2.13.0

• Link - Hyperlink Style

• Answer - The color that is used when a function returns a value

• Input - The color used for taking input (input())

• Output - General output color

To print something with a specific color, make sure you import theme from core, and then you can print like this:

#General output
print(theme["styles"]["output"] + "This is some pretty cool general output")

#Taking input
input(theme["styles"]["input"] + "How are you liking this cool theme stuff? ")

#Using a variable
importantVariable = "YOU BETTER PAY ATTENTION TO ME BECAUSE THIS IS VERY IMPORTANT"
print(theme["styles"]["important"] + importantVariable)

Handling special events

The calculator will send a signal to plugins when certain events happen. This can be taken advantage of by making
a function in your plugin with the same name as the signal name. Some signals take arguments, so that you can do
something with the data. Available signal names can be found below:

• onRestart - Activated when the calculator restarts

• onPluginsLoaded - Activated when all plugins have been loaded

• onLinuxStart - Activated when the calculator is started on a Linux operating system

• onHaikuStart - Activated when the calculator is started on Haiku

• onWindowsStart - Activated when the calculator is started on Windows

• onMacStart - Activated when the calculator is started on MacOS

• onUnknownStart - Activated when the calculator is started on an unknown operating system

• onStarted - Activated once calculator is fully started

• onReady - Activated once calculator is ready for user input

• onInput - Activated when user inputs something, like a calculation (passes the input as an argument)

• onError - Activated on error (passes the exception type as an argument)

• onPrintAnswer - Activated when the answer is printed

• onEofExit - Activated when a user exits the calculator by pressing Ctrl + D

• onFatalError - Activated when the calculator encountered a fatal error and cannot continue (passes the excep-
tion type as an argument)

• onSettingsSaved - Activated when the settings have been saved and the config file has been updated

An example of the use of these signals can be found here:

#This is in your plugin file
def onLinuxStart():

print(theme["styles"]["output"] + "Hey, you\'re pretty cool, you use linux.")
(continues on next page)

2.1. Table of Contents 13

ImaginaryInfinity Calculator, Release 2.13.0

(continued from previous page)

def onWindowsStart():
print(theme["styles"]["output"] + "Ew, Windows")

#Since this passes an argument, you must add an argument in the function
def onError(err):
if err == NameError:

print(theme["styles"]["error"] + "Whatever you tried to do includes an␣
→˓undefined variable")

Debugging your plugin

While debugging your plugin a simple error type may not be enough; you may need a traceback. To get the full trace-
back, you can change debug in the dev section of the config file to true. You can do this manually, with settings.
editor() in the calculator, or with settings.configMod("dev", "debug", "true").

2.1.2 Making a theme

Users can make custom themes for iicalc. This is a guide on how to create them.

Manually making a theme

A theme file has a basic structure. You have the section that tells all of the information about the theme and the section
that defines the actual colors. Themes currently support the use of colorama colors and ANSI colors. First, make a
new theme file with the .iitheme extension. We’ll call ours test.iitheme. Now, open the theme file in an editor
and paste this theme template into it, replacing NAME and DESCRIPTION with the values that you are using.

[theme]
name = NAME
description = DESCRIPTION
ansi = false

[styles]
normal = No
error = No
warning = No
important = No
startupmessage = No
prompt = No
link = No
answer = No
input = No
output = No

If you are using ANSI colors, change ansi to true, if not, leave it as false. Now for the fun part, the colors. You can
either use ANSI colors, or if you’re going for something more basic, you can use colorama. Replace every instance of
No with the corresponding color that you would like for that value. Here is a list of what every value is for. Here are 2
examples, one for colorama and one for ANSI:

14 Chapter 2. Making and submitting a standardized plugin or theme

ImaginaryInfinity Calculator, Release 2.13.0

Colorama:

[styles]
normal = colorama.Fore.RESET + colorama.Back.RESET + colorama.Style.NORMAL
error = colorama.Fore.RED + colorama.Back.RESET + colorama.Style.BRIGHT
warning = colorama.Fore.YELLOW + colorama.Back.RESET + colorama.Style.NORMAL
important = colorama.Fore.MAGENTA + colorama.Back.RESET + colorama.Style.BRIGHT
startupmessage = colorama.Fore.YELLOW + colorama.Back.RESET + colorama.Style.NORMAL
prompt = colorama.Fore.GREEN + colorama.Back.RESET + colorama.Style.BRIGHT
link = colorama.Fore.BLUE + colorama.Back.RESET + colorama.Style.BRIGHT
answer = colorama.Fore.GREEN + colorama.Back.RESET + colorama.Style.NORMAL
input = colorama.Fore.CYAN + colorama.Back.RESET + colorama.Style.NORMAL
output = colorama.Fore.WHITE + colorama.Back.RESET + colorama.Style.NORMAL

ANSI:

[styles]
normal = \u001b[38;5;238m\u001b[48;5;19m
error = \u001b[38;5;197m\u001b[48;5;201m
warning = \u001b[38;2;219;203;72m
important = \u001b[38;5;236m\u001b[48;5;47m
startupmessage = \u001b[38;5;21m\u001b[48;5;39m
prompt = \u001b[38;5;227m\u001b[48;5;126m
link = \u001b[38;5;26m\u001b[48;5;137m
answer = \u001b[38;5;225m\u001b[48;5;237m
input = \u001b[38;5;178m\u001b[48;5;36m
output = \u001b[38;5;143m\u001b[48;5;225m

While ANSI gives more power over the colors, colorama is simpler, so it’s up for you to decide which best fits your
needs. If you’re interested in ANSI, I’ve found this article fairly useful in getting you started.

Using a tool

If you don’t want to manually make a theme, or you want to have more control by using ANSI, but just can’t understand
that, there are some tools to help you in making themes. I’ve included a list below of some good ones.

• Builtin themes.editor() command - good for making themes from a command line, no ANSI support.

• themegui plugin. This plugin can be installed with pm.install("themegui") or through pm.store()
(store.store() is now deprecated and will be removed in a future version). This plugin uses Tkinter and
has adjustable RGB values with a preview. This plugin also has ANSI support.

2.1.3 Publishing your plugin to the store

2.1. Table of Contents 15

https://www.lihaoyi.com/post/BuildyourownCommandLinewithANSIescapecodes.html

ImaginaryInfinity Calculator, Release 2.13.0

16 Chapter 2. Making and submitting a standardized plugin or theme

CHAPTER

THREE

NOTICE: THE PLUGIN STORE IS NO LONGER AVAILABLE.

3.1 Submiting a plugin

1. Open your browser and go to https://turbowafflz.azurewebsites.net/auth. Note that this make take a minute or
two depending if the server is online or not.

2. Click on the “Submit a new plugin” button.

3. Type: Click on the first dropdown menu and select if your plugin is a plugin or a theme.

4. Name: Go to the name input box, and type your plugin name, preferably a name that is all lowercase.

5. Description: Type the description of your plugin or theme in the description box, this will be displayed on the
plugin page in the store.

6. Short Description: Underneath the description box is the short description, this will be displayed in the store as
a sort of preview description.

7. Version: Now put in the plugin version, this would probably be 1.0 or 1.0.0 if its the first release version.

8. Dependencies: Now you can add dependencies if you are submitting a plugin and not a theme. These can be
other plugins, or PyPI packages in a comma separated list. PyPI packages must my prefixed with pypi:. For
example, if you depended on the formulas plugin and the PyPI package numpy, you would put formulas,
pypi:numpy. This can be left blank if there are no dependencies.

9. Download link: Go to the download link box. You must use Github or Gitlab to host the files, for instance,
I have a central repository for all of my plugins that you can find here. Once you’ve uploaded your plugin to
Github or Gitlab, go to the file, and hit the “Raw” button on the right if on Github, or the “Open Raw” icon
button on the right if on Gitlab. Now copy the current URL and paste it into the download link input. It should
look something similar to https://raw.githubusercontent.com/user/repository/branch/file.py
or https://gitlab.com/user/repository/-/raw/branch/file.py

10. File name: Now, put the filename of the plugin on Github or Gitlab into the filename box.

11. File hash: Now you must get the SHA256 hash of the file. Follow the instructions below depending on your
operating system. If your OS is not listed, search how to get the SHA256 has of a file on your OS.

• Linux: Navigate to the directory where the file is located in your terminal, and type sha256sum file.py,
replacing file.py with your filename.

• MacOS: Navigate to the directory where the file is located in your terminal, and type shasum -a 256
file.py, replacing file.py with your filename

• Windows: Open PowerShell. Navigate to the directory where the file is located, and type Get-FileHash
file.py | Format-List, replacing file.py with your filename. Now copy the value after Hash:

12. Calculator Version: This is where you put the calculator version requirements that are needed for your plugin to
run. For example, if your plugin only runs on version 1.5.6 and below, you would type <=1.5.6 in the text box.

17

https://turbowafflz.azurewebsites.net/auth
https://github.com
https://gitlab.com
https://github.com/TabulateJarl8/calcplugins

ImaginaryInfinity Calculator, Release 2.13.0

You can add multiple requirements by separating them with commas. To view more about the types of version
specification you can do, look at the documentation for PEP 440

13. Maintainers: You can add maintainers by their Github usernames. You are added automatically as a maintainer.
If you do not press enter after typing a name, it will not be counted as a maintainer, though you can add or remove
maintainers later on.

3.2 Updating your plugin

Once you want to update your plugin, you can go to https://turbowafflz.gitlab.io/updateplugin.html or click the “Update
an existing plugin” button on the index portal. The same process applies for uploading a plugin, but with something to
ease the proccess. If you type your plugin name into the name input and click the “Autofill” button, it will autofill the
applicable information. Note that this make take a minute if the server went to sleep. You should increase the version
number and recalculate the file hash and make and necessary changes, and then hit the submit button.

3.3 Deleting a plugin

Only the creator of a plugin can delete it. There are 2 ways to do this. The first option is to go here and select it from
the list. The second option is to go to here, select your plugin, and then press the delete button on the plugin page. Note
that the page’s may take a minute to load if the server went to sleep.

3.4 Reporting a plugin

If you find a plugin that violates our guidelines, you can report it by going to https://turbowafflz.azurewebsites.net/
iicalc/browse, selecting the desired plugin, and pressing the report button on the plugin’s page.

3.5 Rating a plugin

There are 2 ways to rate a plugin. The first way is to go to the plugin’s page (find it at https://turbowafflz.azurewebsites.
net/iicalc/browse) and hit the upvote or downvote button. You must be authenticated to do this. The 2nd way is through
the calculator. Start the calculator and run pm.connect() if you haven’t done that already. Follow the steps and once
you’re authenticated, you can either run pm.rate("pluginname"), or by going to the plugin’s store page, accessed
with pm.store() (store.store() is now deprecated and will be removed in a future version).

3.6 Any problems?

Did you get an error or encounter something broken? Start an issue at https://gitlab.com/TurboWafflz/
ImaginaryInfinity-Calculator/-/issues

18 Chapter 3. NOTICE: THE PLUGIN STORE IS NO LONGER AVAILABLE.

https://www.python.org/dev/peps/pep-0440/#version-specifiers
https://turbowafflz.gitlab.io/updateplugin.html
https://turbowafflz.azurewebsites.net/iicalc/delete
https://turbowafflz.azurewebsites.net/iicalc/browse
https://turbowafflz.azurewebsites.net/iicalc/browse
https://turbowafflz.azurewebsites.net/iicalc/browse
https://turbowafflz.azurewebsites.net/iicalc/browse
https://turbowafflz.azurewebsites.net/iicalc/browse
https://gitlab.com/TurboWafflz/ImaginaryInfinity-Calculator/-/issues
https://gitlab.com/TurboWafflz/ImaginaryInfinity-Calculator/-/issues

CHAPTER

FOUR

HOW TO ADD PLUGIN SETTINGS TO SETTINGS EDITOR

This is a guide on how to add custom plugin settings to the settings editor. We will use the discordrpc plugin as an
example.

1. The first step is to add these imports

from dialog import Dialog
import configparser

We will need dialog to display the dialogs and configparser to read config.ini.

2. The second step is to read the config file. You should put this right underneath your imports so that it gets run
on start. You should also set the config variable to global so you can access it everywhere. Just add these lines
after your imports.

global config
config = configparser.ConfigParser()
config.read("config.ini")

This will set a global config variable for your plugin.

3. Now we must make sure that your section in the config is added. This can be whatever you want, but for this
example we’ll be using a section called discord. Underneath the reading of the config, just add:

if not config.has_section("discord"):
config.add_section("discord")
with open("config.ini", "w") as configFile:

config.write(configFile)

4. The third step is to create your settings class. This will tell the calculator where to look for your settings. Some-
where in your plugin, add a settings class. You will need to put a variable called choices in this class. This
variable will indicate what goes in the main settings menu, and consists of a bunch of tuples in a list. An example
of this is the Theme setting, which says The colors the calculator will use. Add the settings class like
this:

class settings:
choices = [("Discord Rich Presence", "Display ImaginaryInfinity Calculator as␣

→˓your status in Discord"), ("Dynamic RPC", "Update Discord RPC on calculation")]

As you can see, we’re adding 2 settings. 1 entry for Discord Rich Presence, and 1 for Dynamic RPC.

5. Next we have to add the actual code that handles the setting buttons being pressed. The calculator searches your
plugin for a function in the settings class called settingsPopup. This function must take 2 arguments, tag and
config. Just add an empty function with this name to your settings class. This is what your new settings
class should look like:

19

ImaginaryInfinity Calculator, Release 2.13.0

class settings:
choices = [("Discord Rich Presence", "Display ImaginaryInfinity Calculator as␣

→˓your status in Discord"), ("Dynamic RPC", "Update Discord RPC on calculation")]
def settingsPopup(tag, config):

pass

6. Next, we have to initialize a new dialog in the function.

class settings:
choices = [("Discord Rich Presence", "Display ImaginaryInfinity Calculator as␣

→˓your status in Discord"), ("Dynamic RPC", "Update Discord RPC on calculation")]
def settingsPopup(tag, config):

d = Dialog(autowidgetsize=True)

If we must now check which option the user selected. This value is stored in the tag argument. So for each option you
have, add a part to the if statement.

class settings:
choices = [("Discord Rich Presence", "Display ImaginaryInfinity Calculator as␣

→˓your status in Discord"), ("Dynamic RPC", "Update Discord RPC on calculation")]
def settingsPopup(tag, config):

d = Dialog(autowidgetsize=True)
if tag == "Discord Rich Presence":

pass
elif tag == "Dynamic RPC":

pass

7. Now we must make each value display a dialog menu. Just create a new dialog menu with the different options
of the setting in it. d.menu takes the arguments d.menu(menuTitle, choices=[choices])

class settings:
choices = [("Discord Rich Presence", "Display ImaginaryInfinity Calculator as␣

→˓your status in Discord"), ("Dynamic RPC", "Update Discord RPC on calculation")]
def settingsPopup(tag, config):

d = Dialog(autowidgetsize=True)
if tag == "Discord Rich Presence":

richPresencMenu = d.menu("Discord Rich Presence", choices=[(
→˓"Enable", "Enable Discord RPC"), ("Disable", "Disable Discord RPC")])

elif tag == "Dynamic RPC":
dynamicRPCMenu = d.menu("Update Discord RPC with your last done␣

→˓calculation", choices=[("Enable", "Enable Dynamic RPC"), ("Disable", "Disable Dynamic␣
→˓RPC")])

8. We’re almost done now. Now we must check which option of the setting the user selected and apply that change.
Just replace config["discord"]["tagName"] with config["mySection"]["myTagName"]

class settings:
choices = [("Discord Rich Presence", "Display ImaginaryInfinity Calculator as␣

→˓your status in Discord"), ("Dynamic RPC", "Update Discord RPC on calculation")]
def settingsPopup(tag, config):

d = Dialog(autowidgetsize=True)
if tag == "Discord Rich Presence":

richPresencMenu = d.menu("Discord Rich Presence", choices=[(
(continues on next page)

20 Chapter 4. How to add plugin settings to settings editor

ImaginaryInfinity Calculator, Release 2.13.0

(continued from previous page)

→˓"Enable", "Enable Discord RPC"), ("Disable", "Disable Discord RPC")])
if richPresencMenu[0] == d.OK:

User selected ok instead of cancel
if richPresencMenu[1] == "Enable":

config["discord"]["enableRPC"] = "true"
else:

config["discord"]["enableRPC"] = "false"
elif tag == "Dynamic RPC":

dynamicRPCMenu = d.menu("Update Discord RPC with your last done␣
→˓calculation", choices=[("Enable", "Enable Dynamic RPC"), ("Disable", "Disable Dynamic␣
→˓RPC")])

if dynamicRPCMenu[0] == d.OK:
User selected ok instead of cancel
if dynamicRPCMenu[1] == "Enable":

config["discord"]["dynamicPresence"] = "true"
else:

config["discord"]["dynamicPresence"] = "false"

9. This last step is VERY IMPORTANT. You MUST return config at the end of the function, or else no settings
will be applied. Just add return config at the end.

class settings:
choices = [("Discord Rich Presence", "Display ImaginaryInfinity Calculator as␣

→˓your status in Discord"), ("Dynamic RPC", "Update Discord RPC on calculation")]
def settingsPopup(tag, config):

d = Dialog(autowidgetsize=True)
if tag == "Discord Rich Presence":

richPresencMenu = d.menu("Discord Rich Presence", choices=[(
→˓"Enable", "Enable Discord RPC"), ("Disable", "Disable Discord RPC")])

if richPresencMenu[1] == "Enable":
config["discord"]["enableRPC"] = "true"

else:
config["discord"]["enableRPC"] = "false"

elif tag == "Dynamic RPC":
dynamicRPCMenu = d.menu("Update Discord RPC with your last done␣

→˓calculation", choices=[("Enable", "Enable Dynamic RPC"), ("Disable", "Disable Dynamic␣
→˓RPC")])

if dynamicRPCMenu[1] == "Enable":
config["discord"]["dynamicPresence"] = "true"

else:
config["discord"]["dynamicPresence"] = "false"

return config

21

ImaginaryInfinity Calculator, Release 2.13.0

22 Chapter 4. How to add plugin settings to settings editor

CHAPTER

FIVE

PLUGIN SUBMITTING GUIDELINES

All of the guidelines for submitting plugins can be found here. We reserve the right to remove any plugins from the
store at any time for any reason. We decide if you have broken any of the guidelines. By using the plugin store, you
agree to these terms.

• Any malicious plugins will result in the plugin being deleted and an immediate ban from submitting plugins.

• The only ads that are allowed are self-promotion ads. You may not receive payment for any ads displayed.
Any violation of this rule will result in a warning and the plugin being taken down until it is updated to fit the
guidelines.

• Any sexual content will result in a warning and the plugin being taken down until it is updated to fit the guidelines.

• Threats of any kind will not be tolerated and will result in the plugin being deleted and an immediate ban from
submitting plugins.

• Revealing someone’s personal or confidential information will result in the plugin being deleted and an immediate
ban from submitting plugins.

• Illegal content of any kind will not be tolerated and will result in the plugin being deleted and an immediate ban
from submitting plugins.

• Promotion of terrorism will not be tolerated and will result in the plugin being deleted and an immediate ban
from submitting plugins.

• Purposely spreading false information will result in a warning and the plugin being taken down until it is updated
to fit the guidelines.

• Telemetry without consent will result in a warning and the plugin being taken down until it is updated to fit the
guidelines.

• search

23

	ImaginaryInfinity Calculator
	NOTICE: ImaginaryInfinity Calculator has reached end of life and will no longer receive any updates. We are now working on a new, actually functional calculator, which you can find here: https://gitlab.com/ImaginaryInfinity/squiid-calculator/squiid
	Packages
	Debian/Ubuntu
	PPA:
	Manual installation:

	Arch Linux
	Red Hat/openSUSE
	Windows Installer
	Snap
	AppImage

	Installation
	Portable Mode
	Linux/MacOS/Android installation
	Windows Installation

	Command usage
	Supported platforms
	Plugins
	Plugin Documentation

	Themes
	Built in commands:
	Plugin store
	CLI Store
	GUI Store
	Submitting a plugin

	In-app documentation

	Making and submitting a standardized plugin or theme
	Table of Contents
	Making a plugin
	Choosing a filename
	Importing features from core
	Running code on calculator start
	Giving answers
	Printing Information
	Handling special events
	Debugging your plugin

	Making a theme
	Manually making a theme
	Using a tool

	Publishing your plugin to the store

	NOTICE: THE PLUGIN STORE IS NO LONGER AVAILABLE.
	Submiting a plugin
	Updating your plugin
	Deleting a plugin
	Reporting a plugin
	Rating a plugin
	Any problems?

	How to add plugin settings to settings editor
	Plugin Submitting Guidelines

